Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates.\ud\udWhen waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation.\ud\udA simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes.\ud\udOur evaluation of calcite bulk and surface equilibria draws several important inferences about the proposed LSW oil-recovery mechanisms. Diffuse double-layer expansion (DLE) is impossible for brine ionic strength greater than 0.1 molar. Because of rapid rock/brine equilibration, the dissolution mechanism for releasing adhered oil is eliminated. Also, fines mobilization and concomitant oil release cannot occur because there are few loose fines and clays in a majority of carbonates. LSW cannot be a low-interfacial-tension alkaline flood because carbonate dissolution exhausts all injected base near the wellbore and lowers pH to that set by the rock and by formation CO2. In spite of diffuse double-layer collapse in carbonate reservoirs, surface ion-exchange oil release remains feasible, but unproved.
展开▼
机译:当储集层岩石被水强烈润湿或原油不是沥青质时,低盐度注水(LSW)无效。 LSW的成功在很大程度上取决于注入盐水改变储层原油盐水/岩石(COBR)界面的表面化学性质的能力。 LSW在碳酸盐储层中的实施尤其具有挑战性,因为储层的盐度很高,更重要的是,由于岩石矿物的高反应性。这两个功能使对与LSW成功相关的COBR表面化学的理解变得复杂。在这里,我们解决了化学活性碳酸盐中的复杂物理化学过程,这些碳酸盐充满了稀盐水,并充满了大气二氧化碳(CO2),并可能补充了其他离子性物质,例如硫酸盐或磷酸盐。在短距离内注入盐水。在反应性碳酸盐岩的存在下,注入盐水的离子形态发生了很大的变化。我们的新计算表明,岩石平衡的pH值呈弱碱性,与注入的盐水pH值无关。我们首次确定源自富含CO2的原油和天然气的碳酸盐岩储层的CO2含量在设定含水pH和岩石表面形态方面起着主导作用。\ ud \ ud一个简单的离子络合模型可以预测方解石表面电荷随储层盐水组成的变化。方解石的表面电荷可能为正或负,这取决于与方解石接触的储层盐水的形态。没有零电荷的单点;所有溶解的水性物质均由电荷决定。岩石平衡的含水成分控制方解石表面离子交换行为,而不控制注入的盐水成分。在高离子强度下,双电层塌陷并且不再扩散。所有表面电荷都直接位于内亥姆霍兹平面和外部Helmholtz平面中。\ ud \ ud我们对方解石体积和表面平衡的评估得出了有关拟议的LSW采油机理的几个重要推论。如果盐水离子强度大于0.1摩尔,则不可能进行扩散双层膨胀(DLE)。由于快速的岩石/盐水平衡,消除了释放粘附油的溶解机理。而且,由于在大多数碳酸盐中几乎没有松散的细粉和粘土,因此不会发生细粉动员和伴随的油释放。 LSW不能是低界面张力的碱性驱油剂,因为碳酸盐溶解会耗尽井眼附近所有注入的碱,并将pH降低至岩石和地层CO2所设定的pH。尽管碳酸盐岩储层中出现了弥散的双层塌陷,但表面离子交换油的释放仍然可行,但尚未得到证实。
展开▼